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The Rainbow-II Gigabit Optical Network

Eric Hall, Jeff Kravitz, Rajiv Ramaswami, Senior Member, IEEE,
Marty Halvorson, Stephen Tenbrink, and Richard Thomsen

Abstract— This paper describes the Rainbow-II optical
metropolitan area network (MAN), which supports 32 nodes
each at 1 Gbit/s over a distance of 10-20 km. Rainbow-II uses
optical wavelength-division multiplexing (WDM), in a broadcast
star architecture. Each node uses a separate fixed wavelength
for transmitting data and a tunable receiver for receiving one of
several data streams. The network is implemented in the form of
optical network nedes, each attached to a host computer via the
high-performance parallel interface (HIPPI). Each network node
contains protocol processing hardware to offload the protocol
processing work from the host computer onto the node. The
goal is to provide full gigabit-per-second bandwidth to end-user
supercomputer applications. Preliminary protocol performance
measurements in a testbed network are given.

I. INTRODUCTION

PTICAL networking using wavelength-division multi-

plexing (WDM) offers the potential for building large
networks supporting hundreds of nodes and offering each node
capacities of up to 1 Gbit/s [1]-[3]. For an earlier WDM net-
work project, we prototyped a 32-node, 300 Mbit/s per node,
WDM metropolitan-area network (MAN) called Rainbow-I
[4]. This paper descibes the Rainbow-II network, which is a
follow up to Rainbow-I. Rainbow-I was built primarily to gain
experience with using optical tunable components and other
technology in a field environment. In contrast to Rainbow-I,
Rainbow-II was built to study and gain experience with higher-
layer protocols and end-user supercomputer applications. The
network was designed and built by IBM Research. It is cur-
rently deployed as an experimental testbed at the Los Alamos
National Laboratory (LANL). LANL is making performance
measurements and experimenting with gigabit applications,
preliminary results of which are presented in this paper.

A. Rainbow-I Architecture

In Rainbow-I, each station has an optical transmitter that
emits light at a wavelength different from other transmitters
in the network. A fiber leads from each station to the network
hub, which is an all-glass, totally passive star coupler with NV
inputs and N outputs, N being the number of stations in the
network. The star coupler combines the transmissions from
different stations, and at each output, we obtain approximately
(1/N)th of the optical power from each transmitter. From the
star coupler, a fiber leads to each station. Thus, the network is
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broadcast in nature; all transmissions reach all the stations. At
each station, a tunable optical receiver selects one of the NV
wavelengths. Each station in the Rainbow-I network consisted
of an IBM PS/2 host with an attached MicroChannel card,
much like that of a token ring or Ethernet card, that provided
the optical network attachment and support for implementing
a simple circuit-switched media-access protocol. However, the
MicroChannel was used only for control purposes; actual data
entered and exited the Rainbow-I card directly using a separate
serial input and output.

B. Goals of Rainbow-II

The specific goals of Rainbow-II are the following: 1)
to provide connectivity to host computers using standard
interfaces, 2) to deliver 1 Gbit/s throughput all the way to the
application layer, and 3) to study real applications requiring
Gbit/s capacities.

In order to make networks like Rainbow more useful, we
must provide suitable attachment to hosts. The host interface of
choice was the high-performance parallel interface (HIPPI) [5]."
HIPPI is an ANSI standard for connection of data processing
equipment using multiple twisted-pair copper cabling, and
supports data transfer rates of 800 megabits/second. It is
widely used for the interconnection of supercomputers, many
of which have HIPPI interface hardware available.

Two of the major limitations of HIPPI are that it uses a
cumbersome connector and cable (100 wires per connector,
two connectors/cables per full-duplex connection), and that the
maximum distance between HIPPI nodes is 25 m (limited by
the electrical characteristics of the cable). These problems have
been addressed by a version of HIPPI known as Serial HIPPI
which uses HIPPI protocols and signaling methods over optical
fiber. Another ANSI standard interface is the serial 1 Gbit/s
fiber channel standard (FCS) [6]. The Rainbow-II network
supports standard HIPPI currently. We may add a serial HIPPI
or FCS interface in the future when these standards are widely
implemented.

Providing gigabit-per-second speeds to each node at the
physical layer is only a first step. Present-day protocols are
not designed and implemented to allow applications at a node
to realize gigabit-per-second throughputs from gigabit-per-
second-per-node networks. Classic protocols such as TCP/IP
(transmission control protocol/internet protocol) were designed
to minimize transmission bandwidth requirements and not
CPU overheads. The maximum packet sizes supported were
small because of network-imposed constraints on error rates.
These protocols were not designed to be implemented in an ef-
ficient manner and are not very well suited for implementation
on multiprocessors. There are several proposed approaches to
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Fig. 1. The Rainbow-II network.

solving this problem. One approach is to design lightweight
transport protocols that get rid of many of the inefficiencies in
TCP/IP such as unaligned header fields, complicated checksum
calculation, searching to locate the transmission control block
for the connection each time a packet is received, etc. [7]. It
has also been claimed however, that careful implementation
of TCP/IP can significantly reduce the penalty in performance
[8]. However, both these approaches do not solve the major
problem that many hosts, particularly large parallel computers
are not suited for protocol implementation, and even in those
that are, e.g., a Cray, a significant portion of the CPU time is
spent on protocol processing. Thus our solution is to offload
all the protocol processing work from the host onto a dedicated
protocol processor (PP) [9]-[12]. The protocols are imple-
mented on on-board microprocessors with suitable hardware
assists, rather than dedicated VLSI hardware, since that will
give us the flexibility to experiment with a variety of protocols.
We have implemented a lightweight transport protocol called
optical transport protocol (OTP), to be described later.

C. Rainbow-1I Implementation

Rainbow-II uses the same broadcast-star architecture as
Rainbow-1. It is implemented in the form of optical network
nodes (ONN’s) connected to a passive star coupler as shown in
Fig. 1. The ONN’s are attached to host computers via HIPPL
Section II describes the hardware design of an ONN and
Section II-A focuses on the protocol offload hardware. Section
III gives an overview of the software, including the OTP.
Section II-A describes a slim protocol developed to offload
the protocol processing work from the host computer onto the
ONN. Section IV gives the current status of the network and
summarizes the results to date.

II. HARDWARE DESIGN

The rationale above led us to design and build the Rainbow-
IT ONN shown in Fig. 2. The ONN consists of three logical
sections: a) a host-attach section which is essentially a HIPPI
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interface, b) a network-attach section which contains the
optical transmitter, receiver, and control hardware for the
optical WDM network, and c) a protocol offload section in
the middle for implementing all the protocol layers up to the
transport layer.

The ONN is realized in the form of five printed circuit
boards, of four types. There are two protocol processor (PP)
boards, one for each direction of data travel. In addition,
there is a HIPPI /O adaptor board, and a set of two optical
network attach I/O boards, one containing the optical trans-
mitter and the receiver, and the other containing the logic to
serialize/deserialize the data stream and implement the same
simple media-access protocol used in Rainbow-I [4]. These
boards plug into a custom backplane containing point-to-point
connections for the interfaces between the boards (i.e., no
shared bus). Both protocol processor boards are identical in
design, with only the backplane circuitry determining which
board is connected to which I/O adapter board. The interface
between the PP boards and the I/O adapter boards is such
that changes need not be made to the PP boards if new /O
adapter boards are designed later. In fact, it is assumed that
new 1/O adapter boards will be desigried in future, to support
enhancements to the Rainbow network (e.g., fast tuning for
packet switching) or additional host attach methods (e.g., serial
HIPPI, FCS, host channel).

The boards are mounted in a small, desktop or rack-
mountable cabinet and there are RS232 connections to the on
board processors for bootstrapping, debugging, configuring,
etc.

A. Protocol Offload Section

The protocol offload section of the ONN is designed to
allow much of the communication protocol work to be done
in it, instead of the attached host computer. Our design strategy
was to try to reduce software CPU instruction path-length
counts as much as possible. This is because there are very
few instruction cycles available to process each packet, and
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Fig. 2. The optical network node.

so the software overhead is typically the bottleneck for high
bandwidth and low latency. (For example, in order to achieve
1 Gbit/s throughput using 4 KB packets, each packet must
be processed in 32 us; with a 10 MIPS processor this means
that all processing for a packet has to be done in less than
320 instructions.) This strategy has led to a number of design
decisions as follows.

* The operating system overhead in many protocol imple-
mentations is large, and in many cases cannot be reduced.
In our system this was considered a key area, and so
an operating system, per se, is not used. The code is
a dedicated program running directly on the hardware,
with a number of support functions such as memory
management, etc. being fine tuned to the hardware and
the application. This does lead to increased programming
effort, both to code the support infrastructure, and because
an existing (e.g., UNIX-based) implementation of the
transport protocol cannot not be easily ported to this
environment.

* Given that the hardware is being implemented specifically
to assist in the protocol offload, a number of hardware
features were designed into the system to improve the
performance of the ONN by assisting the onboard soft-
ware. The protocol offload section is comprised of two
individual protocol processor boards, one for each of the
two directions of data travel. The performance enhancing
features on each board include a protocol microproces-
sor, microprocessor program memory, data‘header buffer
memory, two intelligent direct-memory access (DMA)
controllers, four DMA buffer queue FIFO’s, inter-CPU
communication FIFO, an inter-CPU DMA, and hardware
calculation and checking of checksums.

1) Protocol CPU: Each protocol processor board contains
a high-performance RISC CPU (Intel i80960CA) which is re-
sponsible for handling buffer management and protocol offload
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for data traveling in a given direction. The i80960CA processor
is a 32-bit RISC CPU which has been used elsewhere in similar
applications.

2) CPU Program Memory: Bach protocol processor has 2
MB of separate RAM memory to contain the ONN software
and its associated variables and data structures. The program
memory is separate from the data memory to improve access
speed. The ONN control software is loaded into this memory
via the RS232 ports from an attached system such as a PC.

3) Triple Port Data/Header Buffer Memory: In order to
minimize contention for the memories, it was decided to
try using two separate memories on separate buses, one for
data traveling from the network to the host computer, and one
for data traveling in the other direction, in the hope that this
will allow data to travel in both directions concurrently, while
eliminating serious contention for the memory busses.

Triple-ported video RAM’s are used for this memory. The
video RAM’s have two “sequential” interfaces which are used
for the DMA access to and from the memory and a random-
access interface which is used for the interface to the CPU.

4) Intelligent DMA Controllers: Each protocol processor
board has two DMA controllers for data traffic, one to handle
data movement into the buffer memory, and the other to
handle movement out of the buffer memory.

These DMA controllers are “intelligent” in the sense that
they are capable of using the buffer queue FIFO’s (described
below) to obtain and free buffers in memory. They are
therefore asynchronous (to some extent) from the operation
of the protocol processors, freeing these processors from the
cycle-consuming task of setting up each DMA operation and
processing DMA complete functions. The “intelligent” fea-
tures of these DMA controllers help eliminate some software
overhead, thus improving overall ONN performance.

In addition, to eliminate the necessity of copying or moving
data in memory, the protocol headers are stripped by the DMA
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controllers from the user data portion of the packets, and are
placed in separate memory buffers, dedicated to header use.
This allows different headers to be prepended to the data on
the outgoing side, without the necessity of moving data in
memory, again assisting performance.

To support this header/data stripping and to assist buffer
management, the DMA controllers operate with two sizes of
buffers, called H buffers and D buffers. The H buffers are
intended to hold protocol headers and control block informa-
tion, and are therefore relatively short, and the D buffers are
intended to hold user data, and are relatively long. The sizes of
the buffers are selectable by software, and the H/D distinction
is managed by the DMA controller hardware as well as the
software.

The transmit DMA controller, in order to allow for building
up of transmission units from smaller memory blocks, supports
appending of DMA entries via an append function, and also
allows such units to fall on arbitrarily aligned addresses, and
have arbitrary lengths (no restrictions as to 32-bit boundaries
or 32-bit multiples). This allows protocol software to build up
packets from various pieces in disparate portions of memory,
allowing for different protocols, protocol conversion, etc.
without having to move data in memory. This again enhances
performance.

The receive DMA controller has support for calculation
of a TCP checksum on the received packet. When (and if)
TCP/IP is implemented in the node, this will provide a very
fast method of calculating the necessary checksums, which is
considered a serious performance bottleneck in most systems
that do this calculation in software.

5) DMA Buffer Queue FIFO’s: These 32-bit wide queue
FIFO’s are intended as an interface between the protocol pro-
cessors and the “intelligent” DMA controllers, and also are a
simple mechanism to assist the processors in performing buffer
management. The FIFO’s queue up requests for transmission,
free buffers for reception, and provide completed transmission
and reception status information. These queues eliminate the
necessity of immediate software response to events, since no
event is lost if the software cannot respond within a small time
interval. This eliminates interrupt overhead, thus increasing
performance.

There are five logical DMA buffer queue FIFO’s on each
CPU board:

* A receive complete queue: This queue FIFO contains the
addresses, lengths, buffer types, and error status of buffers
that contain received data packets, received headers, and
received “control” blocks. Each entry in this queue FIFO
consists of the following “fields™:

a) the address of the buffer in buffer memory;

b) the length of the received information in memory;

c¢) the type of block received (e.g., header, data, con-
nection, disconnection);

d) the error status;

e) the type of buffer (i.e., H buffer verus D buffer); and

f) the 16-bit one’s complement TCP/IP checksum.

» Two free receive buffer queues: These queue FIFO’s
contain the addresses of H and D buffers to be used by

817

the “intelligent” DMA for subsequent receive operations.
There are two free buffer queue FIFO’s, one for H
buffers (for headers) and one for D buffers (for data). The
“intelligent” DMA removes an entry from a free buffer
queue FIFO at the beginning of each receive operation
when it needs to determine where in buffer memory to
place the data or the header.

e A transmit data queue: This queues FIFO contains the
addresses and lengths of buffers that contain data packets
and headers to be transmitted, as well as special “control”
buffers to be sent to the I/O adapters for other functions
(e.g., connection set up, etc.). Each entry in this queue
FIFO consists of the following “fields”:

a) the address of the buffer in buffer memory;
b) the length of information to be transmitted via the
DMA;
¢) the function code for the buffer (e.g., header, data,
connect, disconnect, etc.); and
d) a tag field used by the software to keep track of the
data block—this tag is returned in the transmission
complete queue below.
The appropriate protocol processor builds these entries
and places them in the queue FIFO when it has data or
headers that need to be transmitted, or when it has special
commands (e.g., connect) that it wishes to send to the I/O
adapter.

o A transmission complete queue: This queue FIFO con-
tains the addresses of header, data, and control buffers
just transmitted by the “intelligent” DMA. Each entry
consists of the following “fields™:

a) the address of the transmitted buffer in memory,

b) the function code (from the work queue entry) of
the buffer,

¢) the error status (e.g., OK, parity error, connection
rejected, etc.), and

d) the software tag field set in the transmit data queue
above.

6) Inter-Processor Communication Message Queue FIFO’s:
These message queue FIFQ’s are similar to the buffer queue
FIFO’s. However, they are used for cornmunication between
the two protocol processors. There is one message queue FIFO
for each direction of communication. Once again, these queues
enhance performance by queueing up inter-processor com-
munication information so that immediate software response
is not required to prevent information loss. Fast inter-CPU
communication is a requirement for most communication
protocols, since the receiver and transmitter must be able to
communication for purposes of acknowlegment of received
packets, for example.

Each FIFO is 32-bit wide, and the information transmitted is
determined by the protocol software. This information consists
of software “messages” to be passed from one processor to
the other.

7) Inter-Processor DMA: The inter-processor DMA is used
when it is necessary to transfer large amounts of information
from the data memory (VRAM) of one protocol processor card
to the other. At this point in time, this fzature is not used for
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protocol processing but is only used to download code from
one processor to the other or for diagnostic/control purposes.

Each protocol processor card has a DMA controller that
can be used for three purposes:

+ transferring data from this CPU VRAM to the other CPU
VRAM (called remote copy);

« transferring data from one location in the local VRAM to
another location in local VRAM (called local copy); and

 calculating a checksum on an area of local VRAM
without copying (called checksum only).

In addition, when the remote copy function is used, the
DMA controller has a special function of copying an eight
word (32 byte) “message” from a special fixed location in
local VRAM to another special fixed location in the remote
VRAM, at the completion of the remote copy function. This
message is used by the software to communicate command
and control information associated with the block of data that
was transferred via the DMA.

B. Optical Network Attach Section

The network attach section of the ONN consists of two
cards, an optical/analog card, and a digital card.

1) Optical/Analog Card: The optical/analog card contains a
distributed-feedback (DFB) laser, a fiber-Fabry—Perot tunable
filter, and an avalanche photodiode (APD) receiver. Each ONN
in the network has a laser at a different wavelength and
the laser is maintained at a constant temperature to avoid
wavelength drift. The Fabry—Perot filter has a free spectral
range of 32 nm and a finesse of about 100, and can tune from
one wavelength to another in 25 ms.

2) Digital Card: The digital card implements the circular
search medium access control protocol used in Rainbow-I [4],
and provides flow control in hardware.

3) Circular Search Protocol: The Rainbow-I network used
a simple inband signaling protocol to set up and takedown
connections between nodes in the network. Essentially, in
order to set up a connection, a node continuously broadcasts
a connection request message on its assigned wavelength. The
intended destination, if idle, scans its tunable filter across
all the wavelengths looking for such a request and locks to
a wavelength if it sees such a request. It then sends back
a connection accept message that the originator looks for
while itself scanning across all the wavelengths. In Rainbow-1
this protocol was implemented mostly in software. Rainbow-
II implements this protocol entirely in hardware, mainly to
relieve the protocol processing CPU’s from performing this
function.

4) Hardware Flow Control: Once a connection is set up
between two nodes, flow control is required to prevent packets
from being lost due to buffer overflows at the receiving node
if it is unable to cope with the speed of the sender. A sliding
window mechanism [13, chap. 2] is commonly used for this
purpose. At each instant the sender maintains the value of
the maximum sequence number that he can transmit and the
last acknowledged sequence number. Based on its available
buffers, the receiver sends tokens periodically to increase the
value of the maximum sequence number that the sender is

allowed to transmit. Usually such a scheme is implemented
in software. Rainbow-II implements this entirely in hardware
on the digital card, again to partially relieve the protocol
processing CPU’s from performing this function.

III. SOFTWARE DESIGN

The ONN software supports two modes of operation.

A) Transparent mode: In this mode, once a connection is
established [using the HIPPI LE (link encapsulation)
header to determine the destination], packets are passed
through the ONN without modification. The protocol
offload function is disabled in this mode. This mode
allows existing TCP/IP or other protocols on the host
to operate across the network end-to-end without any
changes.

B) Protocol offload mode: This mode allows the complex-
ity of a full reliable transport protocol to be offloaded
from the host computer to the ONN. The protocol stack
used for this purpose is shown in Fig. 3. The host
computer communicates with the ONN via a simple,
lightweight protocol called simple host intersocket pro-
tocol (SHIP) [14] that implements the semantics of the
Unix BSD sockets interface. A socket-like library is
provided to host applications. Thus, host applications
only have to be relinked (not rewritten or recompiled) to
the new library in order to benefit from the performance
of protocol offload. The ONN implements the reliable
transport layer protocol internally to talk to the peer
ONN. Currently, the transport protocol implemented
between Rainbow II nodes is a simple, light-weight,
easy-to-implement private protocol called optical trans-
port protocol (OTP) which was used initially to save
effort. Later, this may be replaced with a full TCP/IP
implementation for two purposes: to connect with hosts
and other networks running TCP/IP, and to compare the
performance of a TCP implementation with the OTP
implementation.

The main goal of the software was to eliminate as much soft-

ware path-length as possible. This was done via the following
design decisions.

1) No operating system or kernel is used inside an ONN.
The ONN software runs completely stand-alone, specif-
ically tailored for the ONN hardware.

2) No multitasking is used. Although this would have
eased the construction of the software, it would have
used precious CPU cycles. So the software runs in a
“polling loop” implementation, where each function runs
sequentially and cannot wait for an event or resource.

3) There are no interrupts under normal operation. This also
reduces CPU cycle utililization and was made possible
by the widespread use of FIFO’s in the hardware design,
thus eliminating the need for immediate response to
events by the queueing function of the FIFO’s.

4) In order to support different transport protocol software
(currently OTP, future TCP/IP), the interface between
SHIP and the transport protocol was kept as generic
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Fig. 3. The protocol stack.

as possible. Subroutine calls for opening and closing
connections, transmitting packets, and handling errors
are the only interfaces between the two protocols. There
is no sharing of control blocks or other memory-based
structures.

A. SHIP

The protocol offload hardware support in the ONN surfaces
another problem, namely how to get the data between the
computer running the application program (referred to below
as the host) and the protocol offload hardware in the ONN.
To solve this problem, we developed the SHIP protocol [14]
jointly with Intel. SHIP has been implemented on a variety
of hosts (Cray YMP, Intel Delta, and IBM RS6000) and
two protocol processors (PP’s)—the ONN and the crossbar
interface (CBI) at LANL [15].

This immediately brings up the question “Why is SHIP less
work for the host than the protocol being offloaded?” There
are a number of answers.

» The connection between the host and the PP is a point-
to-point dedicated connection, or a circuit-switched con-
nection, not a packet-switched network. It may, in some
future implementation, even be a memory-to-memory or
internal bus connection to a PP that is part of the same
computer as the host. Thus, there is no need in SHIP
for routing, congestion control, packet fragmentation and
reassembly and other protocol functions used in full
network protocols, such as TCP/IP, or other proposed
“lightweight” protocols that have attempted to solve a
similar, but not identical problem.

» The connection between the host and the PP is assumed
10 be much more reliable, in terms of corrupted bits, than
a “normal” network connection, allowing error recov-
ery to be simpler, since the number of retransmissions
is assumed to be very low and therefore not an area
needing optimization. This, in conjunction with the point-
to-point nature of the connection, allows for very large

packet sizes, reducing the per-packet protocol overhead
considerably.

» Since SHIP, by definition, will only be seen between the
host and the PP, not on any external network, there is no
need to support backward compatibility with a large zoo
of existing protocols. This allows a number of simplifying
design decisions to be made.

1) SHIP Design Assumptions: The SHIP protocol was de-
signed with two important objectives: 1) It must allow existing
application programs to run with as few changes as possible,
preferably none. 2) It must be much less work for the host to
process than the protocols being offloaded (TCP/IP).

The first objective led to the design decision that the SHIP
protocol would basically be a protocol implementation of the
sockets interface, which is widely used as the application
interface to TCP. Ideally, applications that use sockets to
access TCP would need only be relinked, or in some cases only
need to specify different run-time parameters, and would then
be using SHIP instead of TCP to talk to a PP that would then
do the protocol processing. Therefore, SHIP is a protocol that
essentially imitates the sockets interface by an actual protocol
transmitted over a point-to-point connection.

The second objective led to a number of important design
decisions.

o All SHIP headers are essentially of one common fixed
length and fixed format, except for a few header types
containing variable length extensions at the end.

» Most fields in the SHIP headers are 32-bit aligned fields.

» Data packets can be very large, potentially gigabytes in
size. The actual size used is negotiated between the host
and the PP on a per-transfer basis (i.e., not fixed per
connection). Currently, due to buffer memory limitiations
in the ONN, packets of 1 MB are considered typical.

 The protocol is a master—slave protocol, not peer-to-peer.
The host is always the master, and the PP is always the
slave. This has the slight disadvantage that SHIP cannot
not be used as a lightweight transport replacement for
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TCP between hosts, but requires an intermediate PP. The
reduction in overhead in both the host and PP more than
offsets this disadvantage.

* A number of simplifying restrictions have been made,
such as the following.

a) A host cannot send or request data out of order,
except for repeating a transmission not yet acknowl-
edged.

b) Data, once received by the PP and acknowledged
to the host has not necessarily been received by the
remote peer. It is the PP’s responsibility to ensure
reliable delivery.

¢) Certain features of TCP, e.g., “urgent data” are not
supported, for performance reasons.

2) SHIP Overview: The standard socket calls that are sup-
ported by SHIP are: socket, bind, connect, listen, accept, shut-
down, select, getsockopt, setsockopt, read, write, send/sendto,
recv/recvfrom, and close. The blocking and nonblocking ver-
sions of the appropriate commands are also provided.

The SHIP packet format itself consists of a fixed format
header, consisting of 10 32-bit words, optionally followed in
some cases by a variable-length extension, which must be an
even integral number of 32-bit words (in order to support some
link implementations that are 64 bit in width, such as 1600
Mbit/s HIPPI).

The fixed fields in the SHIP header are the following.

Function Code: This is a 16-bit field (in the first 32-bit
word) that indicates the specific function (e.g., create, read,
etc.) that the packet is calling for.

Host Id: This is an 8-bit field (also in the first 32-bit word)
that is used when a PP is attached to multiple hosts.

Status: This is an 8-bit field (also in the first 32-bit word)
that is used by the PP to return any protocol errors to the host.

Request Id: This is a 32-bit word that is a unique number
specified by the host for each Requested function, and returned
by the PP with each reply, allowing the host and the PP to
detect retransmissions.

Host Socket ID: This is a 64-bit number used by the host
to match the replies from the PP to its own internal socket
identifiers. It is sent by the host in each packet, and is returned
by the PP in each reply. The PP has no other use for the field,
and never interprets or modifies it.

PP Socket ID: This is a 64-bit number, used by the PP to
match the requests from the host to the PP’s own internal
socket identifiers. It is initially returned to the host when a
socket is created (via the create function) and is then sent by
the host in each request packet for that socket. The host neither
interprets nor modifies this field.

Note: The use of the above two fields to identify sockets
allows the host and the PP implementations to use their
own optimized identifiers for sockets, allowing improved
performance in the implementations.

Extension Length: This is a 32-bit word that contains the
length of the optional variable length extension to the SHIP
header. In most SHIP packets it is zero. Only a small number
of SHIP packets require more information than can fit in the
fixed portion of the header, and these use this field.

CRAY YMP CRAY YMP

HIPPI
Switch

HIPPI
Switch

. HIPPI (electrical)

IBM RS/6000

IBM RS/6000
Fig. 4. The LANL testbed.

Data Length: This is a 32-bit word that contains the length,
in bytes, of the Data portion of the packet, which immediately
follows the header (for data transfer packets only, such as
read or write).

Command Status: This is a 32-bit word that is used by
the PP to return any errors occurring in the execution of the
specific socket command being issued (e.g., read, accept) as
opposed to SHIP protocol errors which are returned in the
Status field.

Parameter Word: This is a 32-bit word that is used for
various parameters that differ for different SHIP functions.
Since a number of functions needed at most one parameter, it
was decided to have this word in all headers, rather than to
force many headers to use the variable-length extensions just
for a single word. An example of the field’s use is for the
READ command SHIP header, in which this field contains
the size of data being requested.

As can be seen, the SHIP headers were designed to make the
header processing as simple as possible for the host and the PP,
without too much concern for the possible extra transmission
overhead that might be associated with 32-bit fields and fixed-
length headers. Since the whole purpose of SHIP was to allow
operation on very-high speed networks, this small transmission
overhead is insignificant.

B. Optical Transport Protocol

OTP is a very simple protocol used as a transport layer
protocol between Rainbow II nodes. This protocol was used
because it was very easy to implement and has a potential for
high performance. Standard transport layer protocols such as
TCP were not initially needed, since Rainbow II nodes can
only talk to other Rainbow II nodes, so the transport Layer
protocol used on the Rainbow II network is never surfaced to
any other entity.

The OTP protocol is a go-back-N protocol using fixed length
packet headers and is capable of using large packet sizes.

The go-back-N error recovery strategy is not the most
efficient, but it is easy to implement, and works well because
the optical links have a very low error rate and packets are
not dropped due to buffer overflows because of the hardware
flow control feature.

A fixed length packet header with fixed length 32-bit fields
is used. This allows for fast simple access to packet header
information. In fact, to simplify the implementation, the OTP
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packet header is identical in size, and layout to the SHIP packet
header, with a few fields used for different purposes.

OTP allows packets to be very large (megabytes), allowing
for larger packet processing times. This is a potential disadvan-
tage if the error rate is high, since retransmissions use up a lot
of bandwidth, and the probability of a packet being received
in error is higher. However as the Rainbow II error rate is low,
this was judged not to be a problem. The implementation of
OTP uses this packet size for another advantage, namely the
incoming SHIP packets are converted directly to OTP packets
by merely changing a few fields in the header, with no packet
disassembly or reassembly required.

IV. STATUS AND EXPERIMENTAL RESULTS

The Rainbow-II network was demonstrated at Supercom-
puting’94 and at the Optical Fiber Communication Confer-
ence’95. The demonstration had three RS6000 workstations,
each connected to an ONN. All the ONN’s operated in
transparent mode. Two nodes served as video servers, sending
out high resolution images. The third node served as a receiver
and could establish connections to each of the other nodes
across the network. Each image was 5 MB and about 12
images were transmitted per second across the network on
a connection as 1 MB packets. The resulting 60 Mbit/s
throughput was limited primarily by the speed at which we
could get data out of the RS6000’s and not by the ONN’s.

Rainbow II is currently deployed at LANL. LANL is
evaluating the performance of the Rainbow-II network
against established gigabit testbeds, such as the LANL
HIPPI Testbed, by comparing data-transfer rates between
supercomputers/workstations and other high-end HIPPI-based
systems. The LANL testbed network in its current form is
shown in Fig. 4. It consists of two ONN’s interconnected by
a passive star coupler (with a third yet to be connected). The
ONN’s are not directly connected to host machines. They
are instead connected through the existing HIPPI network to
either IBM RS6000 workstations or to Cray YMP machines.

Figure 5 shows the test results for sending raw data through
the ONN’s in transparent mode. The data was sent from an
RS6000 through the ONN’s and received back by the same
RS6000. The data is taken from the average of five runs with
each run consisting on sending 100 packets between the two

Packet Size (KBytes)

Raw data transfer rates between two RS6000 workstations across the Rainbow-II network. The ONN’s are operated in transparent mode.

machines. The read rate is the rate at which a host receives
data from an ONN and the write rate is the rate at which a
host can send data to an ONN. As expected, the data rates
increase with the packet size since there are fewer packets to
be processed per unit time, and for large packets we are able
to obtain about 30-35 Mbit/s data rates on average. This is
consistent with the 60 Mbit/s rates we were able to get earlier
between two RS6000’s, and again is limited by the RS6000’s
and not by the ONN’s.

Figure 6 shows the test results for data transfer between
two Cray YMP’s. In addition to the data read and write rates -
we also plot two additional parameters of interest: a) CPU
utilization, which is defined as the ratic of the CPU time taken
to transfer the data to the total time taken, and b) the dara
transfer efficiency, which is the the data rate divided by the
CPU utilization, or in other words the total amount of data
transferred divided by the CPU time taken. In each plot, one
curve is from an experiment wherein the Crays are connected
through the ONN’s with the ONN’s operated in protocol-
offload mode. The Crays and the ONN’s run SHIP in this case.
The other curve corresponds to an experiment wherein the two
Crays are connected to each other through the HIPPI network
without going through the ONN’s. The Crays run TCP in this
case. In each case, the data is averaged from several runs.

Observe that the SHIP write rate is higher than the read
rate. This is probably because the two Crays were operating
under different loads at the time of the tests. We are verifying
this further currently. The maximum obtained SHIP write rate
during a run was 78 Mbit/s which is close to the 100 MB/s
maximum achievable rate across a HIPPI connection, given
that there is some added overhead for framing and interpacket
delays.

Observe that the average TCP transfer rate of around 55
MB/s is almost independent of the packet size. This is because
the maximum internal packet size of TCP is 64 KB and larger
packets are segmented and actually sent in 64 KB blocks. Note
that for large packet sizes, SHIP achieves higher transfer rates
and lower CPU utilizations, or equivalently, higher transfer
efficiencies, than TCP. This illustrates the benefit of protocol
offload. There are three reasons for this: a) SHIP uses larger-
sized packets (up to 1 MB in the current implementation)
without segmenting them into smaller packets, b) SHIP has
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Fig. 6. Data transfer rates, CPU utilization and data transfer efficiency between two Cray YMP machines. The curve labeled “SHIP” corresponds to the
machines connected through two ONN’s in protocol-offload mode, running SHIP. The curve labeled “TCP” corresponds to the machines connected to

each other directly -through the HIPPI network, running TCP.

no window-size limitation, while the TCP window size on the
Crays is 500 KB, and c) SHIP is inherently designed to be
a more efficient protocol than TCP. Given c), it is surprising
that the SHIP transfer rate is lower than the TCP transfer rate
for small packet sizes. One reason for this may be that TCP is
implemented very efficiently in the kernel of the Cray, while
SHIP is currently an application program that has not yet been
tuned to obtain the best performance. By putting SHIP in the
kernel, the host could process (add SHIP headers) and send
SHIP packets without being interrupted and swapped as in user
mode, and the processing of the packet in the kernel could be
done on another processor of the Cray while the application
continues processing the next packet. Another reason is that
the current implementation of SHIP is essentially as a stop-
and-wait protocol. Allowing queueing of messages so that

the host could send them back-to-back would help to boost
performance. As currently implemented, the host will not send
another packet until the current one has been acknowledged.
By allowing back-to-back packets, there would be less gaps
between packets. We are exploring these . further.

V. FUTURE WORK

LANL plans to run actual applications across the ONN’s
using both transparent and protocol-offload modes. The trans-
parent mode is more useful for some applications that do not
use the Crays (for instance global climate modeling) and that
transfer non-IP (internet protocol) data between the Thinking
Machines CM-5 and a high performance data system (HPDS)
which is based on a large IBM Disk Array. Another one is a
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virtual reality (VR) application running between the Crays and
an SGI workstation. This application will transfer data from
the Cray at 800 Mbit/s and use the SGI to render the images
for subsequent display. The high speed link is used to speed
up the overall VR processing. LANL is currently interested in
exploring technologies for 10 Gbit/s MAN’s to support some
evolving applications and networks like Rainbow-II offer the
potential to be scaled up to achieve these rates.

The ONN has been designed to support a variety of host
interfaces as well as to support optical packet switching in
future as rapidly tunable filters become available. Among the
five cards in an ONN, only the network attach analog and
digital cards need to be changed. The ONN software and the
rest of the hardware would be unchanged. We are currently
developing components and protocols that will enable us to
support optical packet switching.
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